IWS 2

A report comparing the effectiveness of spectroscopy, chromatography, and mass spectrometry for monitoring a specific environmental matrix (air, water, soil)

Deadline: February 24 – March 4, 2025 (week 6)

Objective:

To evaluate and compare the effectiveness of spectroscopy, chromatography, and mass spectrometry in monitoring pollutants within a specific environmental matrix (air, water, or soil), highlighting their advantages, limitations, and practical applications.

1. Introduction

- Overview of the selected environmental matrix (e.g., water).
- Importance of monitoring pollutants in the chosen matrix.
- Objectives of the comparison study and its relevance to environmental science.

2. Overview of analytical techniques

Spectroscopy:

- Describe principles of common spectroscopy techniques (e.g., UV-Vis, FTIR, Atomic Absorption).
- Key pollutants typically analyzed (e.g., metals, nitrates).

Chromatography:

- Explain Gas Chromatography (GC) and High-Performance Liquid Chromatography (HPLC).
- Typical applications (e.g., pesticide and pharmaceutical detection).

Mass Spectrometry (MS):

- Discuss standalone MS and combined techniques (e.g., GC-MS, LC-MS).
- Typical pollutants identified (e.g., volatile organics, complex organics).

3. Comparative evaluation criteria

- Sensitivity and detection limits.
- Specificity and ability to differentiate similar compounds.
- Sample preparation requirements.
- Cost and time efficiency.

• Practical considerations for field versus lab use.

4. Methodology

- Define how the comparison will be conducted
- Select specific pollutants (e.g., heavy metals, volatile organics, pesticides).
- Establish performance benchmarks (e.g., accuracy, precision).
- Simulate testing scenarios with real-world or spiked samples.

5. Results and Discussion

- Analyze each technique's performance
- Discuss combined techniques (e.g., GC-MS) for enhanced analytical capability

6. Practical implications

- Recommend techniques based on:
 - Type of pollutant.
 - Matrix complexity.
 - Available resources (e.g., lab infrastructure, expertise).
 - \circ $\,$ Considerations for regulatory compliance and routine monitoring.

7. Conclusion

- Summarize the strengths and weaknesses of each technique.
- Suggest optimal techniques or combinations for specific monitoring goals.
- Highlight areas for further research or technological improvement.

8. References

• Include a list of academic papers, standards, and technical manuals consulted for the report.

Appendices:

Detailed comparison tables.

Graphical representation of detection limits and accuracy across techniques.

SUMMATIVE ASSESSMENT RUBRICATOR CRITERIA FOR ASSESSMENT OF LEARNING OUTCOMES

IWS 2

A report comparing the effectiveness of spectroscopy, chromatography, and mass spectrometry for monitoring a specific environmental matrix (air, water, soil) (15 points)

Criterion	"Very good" 13-15	"Good" 10-12	"Satisfactory" 5-9	"Unsatisfactory" 0-4
	and mass spectrometry, clearly explaining their principles, advantages, limitations, and	with sufficient explanation of	analysis. Explanations are superficial, and the use of examples is minimal or absent.	The report fails to provide a meaningful comparison of the techniques, with little to no explanation of their principles, advantages, or limitations. There is no evidence or examples to support claims.
	the specific environmental matrix (air, water, or soil), clearly	to the environmental matrix, but the justifications for their suitability or limitations are general or not well-developed.	to the choice of analytical techniques or	The report does not address the relevance of the techniques to the environmental matrix or fails to justify the connections altogether.
Clarity, structure, and use of sources	a logical structure that enhances readability. Arguments are clear and concise, supported by accurate data from reliable and up-to-date sources. Citations and references are properly formatted.	mostly clear, but some arguments may lack coherence or conciseness. Sources are generally reliable but may lack variety or recency. Citations and	may not be credible or relevant. Citation formatting is inconsistent.	The report lacks structure, clarity, and coherence. Sources are absent, unreliable, or irrelevant, and citations are missing or incorrectly formatted.